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Abstract 

The dual representation, which gives a simple analytical form for purely gluonic 
amplitudes, is extended to amplitudes which include a quark-antiquark pair. To min- 
imize the calculations, supersymmetry is used to relate the purely gluonic amplitudes 
to those including a gluino pair from which the quark-antiquark amplitudes are easily 
deduced.~ We explicitly give simple analytical forms for the full amplitudes for those 
multi-parton processes which involve a quark-antiquark pair plus two, three and four 
gluons. 
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1 Introduction 

Recently a new technique has been developed to calculate multi-gluon amplitudes 1121. The key 

element of this technique is the use of a Ghan-Paton basis I31 for the color structure of the gluonic 

amplitudes. For each Feynman diagram contributing to a given process the color factor is rewrit- 

ten in terms of traces of products of SU(N) matrices in the fundamental representation N. Then 

the diagrams containing traces of SU(N) matrices in the same ordering are summed together, 

giving the dual sub-amplitudes and the full amplitude is the sum over non-cyclic permutations of 

the external gluons of these sub-amplitudes multiplied by the trace of the SU(N) matrices in the 

given permutation. 

The suggestion that this color basis might be particularly useful comes from the analogy with 

the dual models, where amplitudes among massless gauge vectors are expressed in exactly this 

way. For this reason we also refer to the Chan-Paton basis as the dual basis. In references [ 1,2] the 

efficacy of this technique was explicitly shown through the analytic calculation of the six-gluon 

matrix element. At first sight, however, this technique does not readily extend to the study of 

processes involving quarks. We certainly know that the color structure of diagrams involving 

quarks does not admit a Chan-Paton representation. Also, dual models describing quarks and 

Juons do not exist, even at tree level where constraints like the critical dimension of the space- 

time do not apply. 

Scattering processes involving a quark-antiquark pair are very important for today’s and 

future hadronic colliders14). First of all they contribute to a substantial part of the jet cross- 

section. Secondly, they give rise to interesting processes like production of weak bosons and of 

heavy flavours. This calls for a formalism in which these phenomenacan be described by relatively 

simple formulae. A generalization of the technique used in jl,Z] to study the gluonic processes 

seems to be the best candidate for such a formalism. In spite of the obstacles pointed out before, 

in reference [5] we were able to construct a set of helicity amplitudes containing gluons and quarks 

by exploiting the factorization properties of the gluon sub-amplitudes. In this paper we extend 

that construction, and we give a full recipe to handle amplitudes containing a quark-antiquark 

pair in a spirit very close to that of the dual expansion for the gluon-only processes. We also 

show how to use this technique in the study of more exotic processes, like the production of 

supersymmetric particles (gluinos and scalar quarks). 

In order to limit the amount of calculations, we complement the dual expansion with the au- 

persymmetry trick, connecting amplitudes with external states obeying different statistics through 

Supersymmetry Ward Identities (SWI’s). A SW1 acting on the full amplitude for a given gluonic 
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process gives rise to identities among processes involving gluinos, i.e. fermions transforming un- 

der the adjoint of SU(N). This allows us to calculate gluino amplitudes from gluon amplitudes, 

or vice versa, without having to evaluate any new sets of Feynman diagrams. We will show how 

to relate gluino amplitudes to quark amplitudes and will implement these techniques by explic- 

itly calculating the full matrix element for the two quark-four gluon process, finding a compact 

analytic expression for it. 

This paper is organized as follows. In Section 2 we review the supersymmetry trick. In 

Section 3 we review the dual expansion technique and we study the color structure of diagrams 

involving a quark-antiquark pair, finding a prescription to generalize the dual basis to the case 

of particles transforming in a representation other than the adjoint. In Section 4 we recall the 

formulae describing the five- and six-gluon matrix element and give the results for the (pqggg) 

and (qqgggg) processes. We will collect some of the details of the derivation in an Appendix. In 

section 5 we will briefly analyse some amplitudes describing rarer processes. like (n > 6)-parton 

scattering and supersymmetric particle production in multi-jet events. We hope that these last 

examples will convince the reader of the power and generality of this technique. In Section 6 we 

will present our conclusions. 

2 The Supersymmetry Trick 

The use of Supersymmetry Ward Identities (SWI’s) for the calculation of tree level gluon scatter- 

ing in QCD was first proposed in [6]. Supersymmetry transforms bosons into fermions and vice 

versa. In our analysis here we will study simple N = 1 supersymmetry, instead of the extended 

N = 2 supersymmetry employed in [6,7]. N = 1 supersymmetry was already used in reference [S] 

for the calculation of the six-parton scattering. 

One possible representation of N = 1 supersymmetry contains a massless vector (g’) and a 

massless spin l/2 Weyl spinor (A*). The f refers to the two possible helicity states of the vector 

and the spinor. Let Q(n) be the supersymmetry charge with 0 being the fermionic parameter of 

the transformation. Then Q(n) acts on the doublet (g, A) as followsllol: 

[Qh),g*(d] = F r*hrl) A*, (2.1) 

~Q(v)>~‘(P)] = ‘f r’(p,rl) g*. 

r* (p, n) is a complex function linear in n and satisfies: 

~+(P,v) = !r-(p,7))1* = rf U(-)(P), 

(2.2) 

(2.3) 
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with u(-l(p) a negative h&city spinor satisfying the massless Dirac equation with momentum p. 

Because of the arbitrariness in choosing the supersymmetry parameter n, we choose this to be 

a negative helicity spinor obeying the Dirac equation with an arbitrary massless momentum k. 

Here and in the rest of the paper we adopt the Xu et al. improved versionIll! of the CALKUL 

parametrization for the helicities l12!. In Appendix A we collect the relevant definitions. According 

to these definitions we can then write: 

r’(p,k) f rf(p,t.?(k)) = (k + IP-) = VVJI (2.4) 

As a notation, we choose to label the supersymmetry charge Q(q) with the momentum k charac- 

terising the parameter n: Q(k) = Q[n(k)]. 

Because of supersymmetry, the operator Q(k) annihilates the vacuum. It follows that the 

commutator of Q(k) with any string of operators creating or annihilating vectors g’ and spinors 

A* has a vanishing vacuum expectation value. If z; represents any of these operators, we then 

obtain the following identity. w : 

O= ([Q,iiY])o=~(tl...[Q,zil...f”)a, (2.5) 
i=l i=l 

where (. . .)s indicates the vacuum expectation value. Ifwe substitute in equation (2.5) the commu- 

tators, we obtain a relation among scattering amplitudes for particles with different spin. The am- 

plitudes with only vectors are the same that one would have in the ordinary non-supersymmetric 

theory, because at tree level the supersymmetric partners of the vectors do not appear as in- 

termediate states. General features of Yang-Mills interactions, like helicity conservation in the 

fermion-fermion-vector vertex guarantee the vanishing of some of the amplitudes in (2.5). The 

arbitrariness in choosing the reference momentum k for the supersymmetry parameter n allows a 

further simplification of equation (2.5), by choosing k to be equal to one of the external momenta. 

To be more explicit, let us give an example. Consider the helicity amplitude 

(g;, g;, g:, , g.f), with two negative-helicity gluons and n - 2 positive-helicity gluons where 

all of the particles are outgoing. Through the SW1 we can relate this amplitude to amplitudes 

with two gluinos and n - 2 gluons. Helicity conservation for the fermions implies that only an 

amplitude with one positive- and one negative-helicity gluino can be non-vanishing. In this way 

equation (2.5) reduces to: 

r-(p1,k)A(A;,g;,A:,g:,...,g,+) + r-(p,,k)A(g;,.~;,A:,g:,...,g,+) 

- 
r-(ps,k)A(g;,g;,g:,. ,snf) = 0. (2.6) 
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As we said before, the purely gluonic amplitude for the non-supersymmetric and the supersym- 

metric theory coincide. The relevant gluon amplitude was given in [1,2]: 

Ah- g- g+ g+) = c7”-2w)’ c ,r 1, 3’“‘, ” (2.7) 
prrm’ 

where the sum is taken over the (n - l)! non-cyclic permutations on the indices. If we then choose 

k = ~1, we obtain the following relation: 

A(g;,A;,A;,g:,...,g;) = ;g”-‘(12)“(23) c tr(X,Xr...Xn) 
(12)(23;. . . (nl) (2.8) 

prrm’ 

For n = 5 this agrees with a previously known expression@l. 

3 The Color Structure and the Dual Basis 

In references i1,2] the suggestion was made to expand any n-gluon matrix element into a Chan- 

Paton color basis[3!. In this basis all of the color factors are expressed through traces of SU(N) 

matrices in the fundamental representation (X matrices), and the full amplitude is given by the 

following expression: 

A, = c tr(X1X2 . . . X,) m(l,2,. . ,n). (3.1) 
parm’ 

We will call the functions m(l,2,. . . , n) sub-amplitudes. They are only functions of the kinematical 

variables of the process, i.e. the momenta and the helicities of the external gluons. These 

variables are represented with a shorthand notation by the indices (1,2,. . . , n). We will use the 

symbol A(. .) for the full amplitude, where the ordering of the indices is irrelevant. The sum in 

Equation (3.1) is taken over all the (n - I)! non-cyclic permutations of the indices 1,2,. ,n. We 

will normalize the X matrices so that [A,,, Xb] = ifiif&, and tr(X.Xb) = 6+ 

The sub-amplitudes satisfy many important properties: 

1. m( 1,2,. , n) is invariant under cyclic permutations of (1,2,. . , n) 

2. m(1,2 ,..., n)=(-l)“m(n,n-l,..., 1). 

3. m( 1,2, . . , n) is gauge invariant, and satisfies the following identity: 

m(1,2,3 ,..., n)+m(2,1,3 ,..., n)+m(2,3,1,..., n)+...sm(2,3: . . . . n-l,l,n) =O. (3.2) 

For future reference we will call this identity the Dual Ward Identity (DWI), since from a 

string point of view it may be thought of as a Ward identity for correlation functions of two 

dimensional conformal fields. Of course it can also be proved by looking at the Feynman 

diagram expansion[ll. 
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4. Factorization on the m-particle poles and factorization of the collinear and soft singularities[1,51. 

5. Incoherence to leading order in N: 

,z. kL12 = N”-‘(N’- 1) c {im(l,2,...,n)l* + I~(N-~)}. (3.3) 
perm’ 

It is easy to prove that a similar representation of the amplitude must hold for processes 

involving gluinos as well as gluons, because the gluino vertices have the same color structure as 

the gluon ones. Also, we can define gluino sub-amplitudes that satisfy all of the above properties. 

If we apply the SW1 to the amplitude written in the dual basis we obtain a set of identities 

among sub-amplitudes, and not just among the full amplitudes. Given the simplicity of the gluon 

sub-amplitudes, one then expects that the gluino sub-amplitudes will be simple as well. In the 

remaining part of this Section we will show how to use these gluino sub-amplitudes in order to 

generate an expression similar to Equation (3.1) for amplitudes with a quark-antiquark pair. 

To start with, let us recall the procedure for obtaining the gluon sub-amplitudes from the 

Feynman diagram expansion. First of all we expand the color factor of each Feynman diagram 

as a sum of traces of X matrices. This is easily achieved by writing f.bc = -itr[X., X,]X,/Jz for 

one of the vertices, and absorbing the remaining fobc’s by using the identity ifif,acX. = [Xb, A,]. 
In this way, for example, we obtain the following identity: 

z* fi2~f*3”f”*5 = ($)‘ trP1, ~21P3~ IL x511. 

This color factor appears, for instance, in a Feynman diagram in which the gluon 1 emits the three 

gluons 2,3 and 4, emerging as gluon 5. We will denote a diagram with this structure D(1,2,3,4,5) 

(see fig. 1). Expanding the commutators of X matrices we see that this diagram contributes to 

various different sub-amplitudes, namely those associated with the permutations of indices arising 

from the expansion of the commutators. To obtain the sub-amplitude corresponding to one given 

ordering, we just have to identify all of the diagrams that contain a trace of X’s in the order 

assigned (up to cyclic permutations). In the five gluon case described above, for example, one can 

easily see that the diagrams contributing to the ordering (1,2,3,4,5) are obtained by taking the 

five cyclic permutations of the diagram 0(1,2,3,4,5) pius diagrams with four-gluon couplings 

that are necessary for the gauge-invariance of the sub-amplitude : 

m(L2,3,4,5) =D”(1,2,3,4,5)+Do(2,3,4:5:1)+Do(3,4,5,1,2) 

+0°(4,5,1,2,3)+Do(5,1,2,3,4). (3.5) 
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For simplicity we have not shown the diagrams with four-gluon couplings, since they have the 

same color structure as the simpler diagrams. In taking the sum it is understood that we omit the 

color factors at the vertices. This is indicated by the superscript 0 added to the D’s. The overall 

color factor tr(X1XZX3XlX5) - tr(X5XIX3XZXl), common to all five diagrams, can be reintroduced 

at the end of the calculation. The second trace with a minus sign is present because of the 

property 2 above. In the case of gluinos this construction goes through in exactly the same 

manner. The calculation of the sub-amplitude will be simpler, though, because some diagrams 

that were present in the purely gluonic case are absent here. This is the case, for example, for 

some of the diagrams containing the four-gluon vertex. 

Let us now study diagrams containing quarks. For the sake of simplicity we continue with the 

five-parton example. We use the same notation as before for the diagrams, but now we put a hat 

on the fermion indices to distinguish them from the gluon ones. We also introduce subscripts 9 

and Q to refer to gluino related quantities and quark related quantities, respectively. We start by 

observing that, up to the color factor, any gluino diagram is identical to the same diagram with 

quarks replacing the gluinos. From this observation it follows, in particular: 

,:. q( 
Do i,2,3,4,@ = c D;(i,2,3,4,?) =ms(i,2,3,4,i). (3.6) 

r@c 

The sums are over the five cyclic permutations of (1.. .5). We can now define a quark sub- 

amplitude and identify it with the gluino one, provided all of the diagrams D, entering the sum 

Equation (3.6) have a common color factor, to be identified with the quark analogue of the 

Chan-Paton factor. 

The color factor for D,(i,2,3,4,5), for example, is given by: 

C XizX3,yX:g = (X2X3X’ )ig. (3.7) 
6” 

It is easy to check that all’of the five diagrams contain this factor. This suggests that the proper 

color basis to study the amplitude for two quarks and three gluons is given by the product of the 

three X matrices corresponding to the colors of the external gluons. A simple analysis of other 

diagrams shows that it is always possible to expand them in terms of sums of products of the 

three X matrices, possibly in different permutations. In fact all of the permutations of (2,3,4) 

appear. 

Some of the diagrams contain additional color factors. For example, D(.?, i, 2,3,4) contains 

a factor (XzX4X3)ii in addition to the (XzX3X4)ij that we have isolated to extract m,(i,2,3,4,5). 

The presence of this term, nevertheless, should be of no concern, since it is clear from its structure 

that D(<,i,2,3,4) will also have to contribute to the sub-amplitude m(i,2,4:3.j). 
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In a similar way one can analyse all of the sub-amplitudes of the kind m,(i, i, j, k3 g), where 

(i,j, k) is a permutation of (2,3,4), with the conclusion that 

m,(i,i,j,k,$) =mF(i,i,j,k,<). (3.8) 

If we now look at the sub-amplitudes in which the two quarks are not adjacent, we discover 

that there are no pieces of the diagram left to contribute: they all went into the sub-amplitudes 

with adjacent quarks. The diagram D4(i, 2,3,5,4), for example, has already been used to generate 

m, (i, 2,3,4,5). In the gluino case, vice versa, the same diagram contains a piece proportional to 

tr(XiXsXs&,Xl), and this piece will contribute to mi(i, 2,3,5,4). 

These considerations can be easily generalized to processes with more than three gluons, and 

lead to the following expression: 

A(q:,q;,ga,,...gn) = C (X3X4”‘Xn)ii n(A:>6;,g3>...:gn). (3.9) 
(%...,n) 

m(b, AZ, Q3r.. , g,,) is a sub-amplitude for two gluinos and (n - 2) gluons. The expansion of the 

quark amplitude in terms of this color basis was used by Kunszt in Reference [S]. The advantage 

of our derivation is the identification of the functions m with gluino sub-amplitudes with the two 

fermions adjacent. These sub-amplitudes can then be written in a very simple form, as will be 

shown in the next Section. We will call the color basis in Equation (3.9) the quark dual basis.’ 

The quark sub-amplitudes satisfy all of the properties of the gluino sub-amplitudes , except 

for the DWI. This identity, in fact, requires the introduction of a sub-amplitude with the two 

fermions not adjacent. Nevertheless, one can still introduce these non-adjacent sub-amplitudes 

for the quarks as auxiliary functions, that may help simplifying some calculation. 

For the amplitude squared, we have an expression very similar to Equation (3.3): 

,xl, I C-1 9 2 9 A q+ q- g3 ,..., gn)l* = N”-3(Nz -1) c {lm(A:,A;,gs ,...I g,,)/*+ O(N-s)}. (3.19) 
t3,...+1 

Notice however the change in the exponent of the leading power of N. We will give the explicit 

form of the sub-leading terms for n = 4,5,6 in Appendix C. 

4 Five- and Six-Parton Processes 

In this Section we will calculate the matrix elements for the scattering of a quark-antiquark 

pair with three and four gluons. Given the discussion presented in the previous Section, all 

‘Since nowhere in this discussion we actually specified under which representation of SU(N) our quarks transform, 
the only ingredient for the proof being the commutation relations for the X matrices, we conclude that the come 
procedure applies also for fermions in representations other than the fundamental. It is sufficient to replace the A 
matrices in Equation (3.9) with the proper matrices in the representation we are interested in. 
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we need are the sub-amplitudes for two gluinos and three or four gluons. We will obtain these 

sub-amplitudes by applying the supersymmetry trick to the five- and six-gluon sub-amplitudes, 

calculated elsewhere11v2!. In order to be self-contained, we will also recall the results for the gluon 

amplitudes. 

In the five gluon case there is only one independent helicity amplitude, with two negative- 

and three positive-helicity gluons. The amplitude with three negative- and two positive-helicity 

gluons is obtained from this one by replacing (. .) with (. .]. All of the relevant sub-amplitudes 

can be obtained from the following one by proper permutations: 

(14’ ~3~2-(gl,gz~93,94~g5) = ig3(12i(23)(34)(45)(51) 

Here I and J are the momenta of the negative helicity gluons, and the ordering in the denominator 

is determined by the order of the momenta in the sub-amplitude. If we now use equations (2.8) 

and (3.9) we get the following result for the full quark amplitude: 

A(P:tqi,g;,d,d) = iS3(23)“(13) 1 (X3X’X5)ii (12)(23i. ,_ (51)’ (4.2) 
{3,4.5) 

where we defined q- to be a negative-helicity quark and q + is its anti-quark. A similar expression 

holds for the two quark-two gluon case. It is straightforward to check that Equation (4.2) agrees 

with the result already known for the amplitude squaredl13!, see Appendix C. 

The six-parton processes are more complex 17,8*g1. Two independent helicity amplitudes are 

needed: AZ-*+ and A3-3+. The first one is a trivial generalization of the five-parton amplitude, 

and the full amplitude for two quarks and four gluons is given by: 

A(P:,q;,g;,d,..., gs+) = G4(23)3(13) C (x3x’x5x6)ii (12)(23;.l. t61)’ (4.3) 
13.4,5,3) 

The six-gluon helicity amplitude A3-3+ is described by three distinct sub-amplitudes, charac- 

terised by three inequivalent helicity orderings: (+ + + - --), (+ + - + --) and (+ - + - +-). 

All of these sub-amplitudes can be written in the following formlll: 

[ 

(22 
~3+3-(gl,g2,93,94,g5,g6) = ig’ t123S12S*3S45S56 + 

P2 

t234&3&4s56s61 

+ 
Y2 

t3,5S34S45S61S12 + 

h23PY + t234w + t345aa 

&2.%3~34~45%%1 1 , (4.4) 

where tijk Z (pi f Pj -I- pk)* = Sij f Sjk i Ski. The coefficients o, S and 7 for the three distinct 

orderings of helicities are given in Table 1. 
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To obtain the fermionic sub-amplitudes we now need the proper SWI. It is convenient to cal- 

culate the expectation value of the following commutator: [Q(k),gch;g;g:g;gi]. By expanding 

the commutator and using equations (2.1) and (2.2) we obtain: 

-r+(pl,k)A(A:,A;,g;,g:,g;,g;) +r+(p,,k)A(g:,g;,g:,g;,g;,g,) 

+r+(pSrk)A(g:,A;,-~;,g:,g;,s;) + r+(p,,k)A(g:,A;,g;,A:,gs,gG) = 0. (4.5) 

Helicity conservation has been used to cancel the two amplitudes with two negative-helicity 

fermions, and the Grassmannian nature of r* was used when moving it through Azll’!. If we now 

choose k = p4 we are left with a relation between a purely gluonic amplitude and two fermionic 

ones. This means that the gluonic amplitudes alone are not sufficient to determine the fermionic 

ones. If we had to start this calculation from scratch, it would be better to calculate the fermionic 

amplitudes first, and then from these obtain the gluonic ones. This is the technique that was 

used, for example, in [6,7,8,9]. Since we already have in a simple form the sub-amplitudes for the 

gluons, we would like to use these without having to calculate any new Feynman diagrams. We 

will show how to disentangle Equation(4.5) in Appendix B. 

The distinct helicity sub-amplitudes that we need are the following: 

(1) m(~:,d,s3,g;,s1,9:); 

(11) ~(~:,4;,s:,s:,s;,ss); 

(III) ~(B:,q;,s;,g:,s:,s;); 

(IV) m(~:,q;,s:,s;,g;,st); 

(V) ~(P:,q;,g;,s:,s;,s:); 

(VI) m(~:,n;,s:,g;,g:,s;). 
The amplitudes with positive helicity quarks can be obtained by complex conjugation and re- 

ordering of the sub-amplitudes. 

When the SWI’s are applied to the sub-amplitudes, the ordering of the helicities is not changed. 

This implies that only (II), (III), (IV) and (V) can be related through a SWI. However we also 

know that the fermionic sub-amplitudes, as the gluonic ones, obey a further identity, namely the 

Dual Ward Identity, equation (3.2). This identity reshuffles the helicities, and allows us to obtain 

relations among sub-amplitudes with different helicity orderings, see Appendix B. 

The general form of the sub-amplitudes is dictated by duality [14!, which gives the following 

pole structure: 

~(~l,q2,93,94,g5,gd = -ig4 1 
Pl PZ 

t~*~S&~S~&6 + t234SZ3s34S56s61 
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p3 p, 
+ t3&4S4&S12 T .%2S23S34&5&6&1 3 (4.6) 

We group the expressions for the functions P in two tables, Table 2 for the Pi’s, i = 1,2,3. 

and Table 3 for P,. The resulting amplitude squared summed over colors, see Appendix C. 

agrees numerically to machine precision with previously published results-‘**!. This concludes the 

analysis of the (kgggg) process. 

5 Other Examples 

In this Section we briefly analyse further processes. Most of them will only become of direct 

interest at the energies available in future accelerators (SSC: LHC), and we present them mainly 

to show the versatility of the techniques that have been introduced in this paper. 

To start with we give the set of SWI’s which are necessary to describe the two massless 

qluino-four gluon scattering process. The sub-amplitudes with two adjacent gluinos were given 

.:I the previous section, when discussing the quark process. The remaining sub-amplitudes with 

non-adjacent gluinos can be obtained from the following SWI’s: 

[41]m(A+ 9+ A- g+ g- g-) = 143]m(g:,g:,g3,g:,g;,g,) - [42!m(s:,~~:,A;,s:,g;,g~), (5.1) Ir 23 37 *r sr 6 

]61]m(h+ g- A- g- g- g+) = ]63]m(g:,g:,g;,g;,g;,g~) - [62]m(g:,‘~:,A;,g;,g;,g6+), (5.2) 1, 29 33 43 5, 6 

i2l]m(At,g;,g:,A;,g;,g;) = [24]n(g;,g:,g:,g;,s;,g~) - j231m(gl,g;,A;,A;,s;,s,), (5.3) 

12114A+ g+ g- A- g+ g-) = i24]m(g:,g:,g;,g;,g:,g,) + [25]m(g:,g?,g3,A;,A:,gg), (5.4) 12 23 3, 43 5, 6 

[3l]m(A+ g- g+ A;,g:,g;) = ~34]m(g:,g;,g:,g;,g:,g,) + [35]m(g:,g;,g,f,A;,A;,s;), (5.5) 12 21 31 

[611’+A+ si g- A- g- g+) = !64]~(g:,s:,s;,s;,g;,g~) - [621m(s:,a:,s;,A;,g;,g~). (5.6) 17 2, 37 4, 5, 6 

The new sub-amplitudes generated by each SW1 are put on the lefthand side. Any sub-amplitude 

needed in these equations that has not been explicitly calculated before its appearance is triv- 

ially obtained from already known expressions by complex conjugation or reordering of the 

indices. The same holds for other sub-amplitudes not appearing in this list, as for example 

m(A:,s2,s;,A;,g;,s:). 
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Next we derive exact expressions for some sets of helicity amplitudes. One of these expressions 

was already given in Equation (2.8), namely the form of the helicity amplitude 

A(A.:,G,g;,g;,..., gnf), describing the most helicity-violating scattering’ of two gluinos and 

(n - 2) gluons: 

Al(A~,‘~;,g;,gh,...,g,+) = $-*(23)3(13) C tr(Xlhz...X.)(12)(23: 
.f n 

. i l). (5.7) 
perm~ 

If we now use Equation (3.9) we can directly obtain the amplitude for an equivalent process, 

involving quarks instead of gluinos: 

AP(a:,q;,g3,g:,...,g,f) =~~“-*(23)~(13) C (hh~..h)~i 
1 

{12)(23)...jnl)’ (53) 
t3,..+) 

This formula was guessed in Reference 153 by studying the behaviour of gluon amplitudes in the 

limit of collinear gluon emission. 

Let us now take the amplitude A(A:, A;, h:,g;, g;, . , g,f). By commuting with the super- 

symmetry operator and properly choosing the reference momentum k we obtain the following 

SWI: 

-%(A:>A:,A;,A;,g: ,..., g,t) = ~a,(g~,A:,A;,g;,g: ,..., 9;). (5.9) 

By using Equation (5.7) we get: 

A,(A:,.~:,,~;,A;,g:,...,g,+) =$-‘(12)(34j3 2 tr(r,b:...X.);12:!z3~,.,inl). (5.10) 
pm’ 

For n = 6 the missing helicity amplitudes can be easily obtained by use of the SWI’s and the two 

gluino-four gluon sub-amplitudes given at the beginning of this Section. 

It is not possible to directly relate the sub-amplitudes for a four-gluino process to sub- 

amplitudes for a four-quark process. This is clear for the scattering of two pairs of quarks of 

different flavour: some diagrams that are present in the gluino case are absent for the quarks 

because it is not possible to contract two different-quark lines. Even if the two quark pairs have 

the same flavour, though, the gluino sub-amplitudes are different from the quark ones. The reason 

for this being that diagrams containing a contraction between adjacent quarks have a different 

color factor from diagrams with a contraction between non-adjacent quarks. As an example of 

this fact, take for instance the gluino sub-amplitude ml(A:,n;,A:,A~,g5,gs) , where for our 

purposes now the gluon helicities are irrelevant. This sub-amplitude is generated by the sum over 

*We refer to the non-zero h&city-violating processes. The amplitudes (+ + + +) and (- + + +) vanish 
identically. 
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cyclic permutations of the diagram Dj(i,i,i,&5,6) pl us diagrams with four-gluon couplings. 

Let us concentrate on two of these diagrams, namely D,(i,i. i,4:5,6) and D,(i,5,6, i,2,3), and 

let us label them as Db and Di’. Dd has fermion 1 contracted with fermion 2: and fermion 3 

contracted with fermion 4. Dj’ has fermion 1 contracted with fermion 4 and fermion 2 contracted 

with fermion 3. If the two quark pairs (a, g2) and (q3, q4) are of different flavour, it clearly follows 

that Di’ = 0. If the two quark pairs are identical, then (D,‘)’ = (0;)” and (Di’) = (Dir)“. 

However, the color factors for the two diagrams are given by rhe following expressions: 

L-4 --) &[A”, X’]ii - $6i2/X5, X612;, (5.11) 

(5.12) 

Since the two diagrams do not have a common color factor, it is not clear how to define a quark 

sub-amplitude for this process. We do not think that this is a serious drawback of the technique. 

The color structure of a four quark-two gluon process is simple and the number of diagrams is 

relatively small. A direct calculation of the matrix element is then possible, and was performed 

by Gunion and Kunszt1151 and by Z. Xu et al.1111, who found a very compact analytic expression. 

To conclude we give the most helicity-violating amplitude for the scattering of gluons and a 

pair of massless scalar-quarks, obtained from the SW1 and the supersymmetry transformations 

of a chiral superfieldllOl: 

(5.13) 
(3....,4 

$* are the supersymmetry partners of the two helicity states of the quark. The two combinations 

4+ 5 $- transform respectively as a scalar and a pseudoscalar under the Lorentz group. For 

n = 4,s these are the only independent non-vanishing helicity amplitudes for this process. 

6 Conclusions 

In this paper we have generalized the dual-ezpanaion technique to processes involving particles 

other than gluons. The extension to gluinos is straightforward, and with minor modifications 

it is possible to treat the quark-antiquark multi-gluon amplitudes, The use of supersymmetry 

Ward identities allows us to relate sub-amplitudes with particles of different spin, thus reducing 

substantially the amount of calculations. 

We have explicitly recalculated the full matrix element for the (qggggg) process in this for- 

malism, and we have found a significant simplification compared to the result already known in 
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the literature. We have also given in implicit form the amplitude for two gluino-four gluon scat- 

tering and explicit formulae for the mostly helicity-violating amplitudes for processes with two 

quarks and n gluons, two gluinos and n gluons, four gluinos and n gluons and two scalar-quarks 

and n gluons. We believe all these examples prove that the dual expansion, the supersymmetry 

Ward identities and the improved Calkul method merge into an extremely powerful technique to 

efficiently calculate tree amplitudes in massless QCD. 

We thank Zhan Xu for sharing with us his knowledge during our collaboration and E. Eichten 

and Z. Kunsst for many discussions related to this work. SJP also wishes to thank the SLAC 

Theory group for hospitality while this manuscript was being completed. 
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United States Department of Energy. 

A Appendix 

In this Appendix we introduce our notation. Here and in the rest of the paper we adopt the XU 

et al. improved versionllll of the CALKUL parametrization for the helicities[“1. We define the 

following symbols for chiral spinors and apinor products@‘l: 

Ii*) = U”‘(pi) = i(l i +f~)U’+)(pi) ) (i i ~ = ii’*’ = a(*)(pi)(l T 75); 

(ij) = (i - lj+) , [ij] = (i + ij-) = sign(p~p~)(jij’. 

We recall here some of the properties ‘satisfied by these symbolsl”!: 

iPal = (PP) = (P+ b?+).= (P - IF) = 0, 

bd = -kP), iPd = 44Pl~ 

lP*I)b+ j = ;(l*Ys)P.r, (PI.+) = (P + ik. 714+) = [p~l@q)~ 

(p+ I7’Iq+)(k - IY’ll-) = 2IP4(k), (Pq)w) = (POW + (PWW. 

(A.1) 

(-4.2) 

(A.3) 

(A.4) 

(A.5) 

(A.61 
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B Appendix 

In this Appendix we collect the Supersymmetry Ward Identities necessary to calculate the sub- 

amplitudes m(qqgggg). We need the sub-amplitudes for seven independent helicity configurations, 

as explained in Section 4: 

(11 m(A:,~i-,s;,s;,s:,sb); 

(11) m(A:,l;,s~,g:,g;,s;); 

(III) m(A:,.t;,g;,g:,g:,g;); 

(IV) m(A:,.t;,g:,g;,g;,g;); 

(V) m(A:,~tl,s;,si,g;,sh); 

PI) m(A:,.t2,s~,s;,s:,g;); 
(VII) m(A:,~t,,g3,sf,s:,sb). 

The sub-amplitude (VII) was described in Section 4, and we will not consider it again here. As 

we pointed out in Section 4 not all of the fermionic sub-amplitudes can be expressed directly in 

terms of gluonic ones. By playing with the SW1 and the DWI it is easy to convince yourself that 

only two sub-amplitudes are needed to obtain all of the others. Suppose in fact we have (I) and 

(II). Then we can get (III) from (II) by using the following form of the SWI: 

(Wm(s+ g- g+ g+ g- g-1 +(52)m(A:,A;,g3f,g:,g;,g;) + (56)m(A:,A,,s;,s:,g:,g~) =O. 1, 23 33 49 5r 6 

(B.1) 

Given (III) we can easily get (IV) by replacing jl.I] with (IJ) and changing the overall sign. 

With the help of (IV) we obtain the sub-amplitude (V) by solving the following system: 

1 

[41jm(A:,~~;:s;,g:,s;,g:) - [46]m(g:,A;,g3,g:,g;,A.G+) = [42]m(g:,g;,g;,g:,g;,g,f) 

(=b(s+ A- g- g+ g- A+) + (35)m(A6+,A;,g:,g,,gl,g:) = (36)~(s:,s;,s;,s:,s;,9:) I> 2, 33 43 59 6 
(B.2) 

To calculate the sub-amplitude (VI) we need a DWI: 

m(A;,~t;,g~,g;,g:,g,) + m(A+ A- s+ g- g- g+) + m(A:,g:>A;,d,g;,g,) 1r 2, 3, 4, sr 5 

+m(A;,A;,g:,g;,g;,g,) + m(A;,&,g;,g:,g;,g,) = 0. (B.3) 

The sub-amplitude with non-adjacent fermions needed to solve equation (B.3) follows from this 
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SWI: 

[31]m(A:,g3,,t~,g,f,g;,g,) = [35]m(A:,A;,g;,g;,g,,g;) - [32]m(g:,g;,g;,g,,g;,g,). 

(B.4) 

This completes the set of sub-amplitudes necessary to calculate the two quark-four gluon ampli- 

tude, provided we supply (I) and (II). 

To obtain (I) and (II), one may have a priori to calculate the relevant set of Feynman diagrams, 

which is not a very difficult task. However we can avoid even this nuisance if we study the 

behaviour of (I) and (II) in the proximity of the three particle poles and in the limit in which two 

of the partons become collinear. 

Let us first consider (II), and let us write the following two SW1 that involve (II): 

!62)m(A:,.t~,g;,g;,g;,g,) + (65)m(A:,g;,g~,g:,ltI;,g,) A (61)~(st,s;,s~,g:~g;~g~) =o 

(B.5) 

[31]m(A:,A;,g;,g:,g;,g,) - [34]m(gt,A;,g:,A:,s;,g6) - [32]m(s:,s;,s;,g:~s;,Sg) =o 

P4 

We can use these two identities and duality to derive (II). In fact, from dualityi141 we know that 

the fermionic sub-amplitudes have the following pole structure: 

m(L2,3,4,5,6) = -id t123S12~~3s,5s55 + PZ 
t234S23S34&6S61 

S p. + 
t345&4s4Ss61s12 + s**s2&4s45&6s61 1 (B.7) 

The functions Pi, (i = 1,2,3), exhibit the factorization of the sub-amplitude on the three particle 

poles. Since any sub-amplitude m(A+,A-, g+, g+) vanishes identically, it immediately follows 

that pr = 0 for (II). For the same reason P3 = 0 for the second fermionic sub-amplitude in 

equation (B.5) and PI = 0 for the second fermionic sub-amplitude in equation (B.6). In this way 

we can read out PI and P3 for (II) directly from Table 1 and equations (B.5), (B.6). Given PI and 

P3, the remaining function P, can be obtained by imposing the proper behaviour of the collinear 

singularitieslI61. 

The same steps can be followed for (I). The explicit expressions for the sub-amplitudes 

(I),. ,(VII) are contained in Section 4. The resulting amplitude squared has been checked nu- 

merically against the available expressions previously obtained in reference [7,8]. The agreement 

is to machine precision. 
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C Appendix 

In this Appendix we give the structure of the amplitude squared for the processes (oqgg), (qqggg) 

and (pqgggg). To keep the following formulae as simple as possible, we introduce the following 

notation for the quark sub-amplitudes : 

m(~l,qZ,SI,SJ,...,gL.) = (I>J>...>L), (C.1) 

where (I, J: . . . , L) is an arbitrary permutation of (3,4,. . :6). From the expansion of the ampli- 

tude in the quark dual basis, 

we obtain the following expression: 

,g, IA(~l,q2,g3,...,gn)12 = (;,,:-31)~n.zj c H,(3,4t...>n). 
,=o (3,..4) 

For n = 4,5,6 the functions Hj are given by: 

. n=4 

H1(3,4) = 1(3,4)1’ 

Ho(3,4) = -(3,4)‘[(3,4) + (4,3)1 

. n=5 

Hz(3,4,5) = 1(3,4,5)1* 

H1(3,4,5) = -(3,4,5)‘[2 (3,495) + (3,5,4) + (4,3,5) + (5,4,3)1 

Ho(3,4,5) = (3,4,5)’ c (I,J,K) 
(I.J,K) 

. n=6 

H&4,5,6) = 1(3,4,5,6)j’, 

H2(3,4,5,6) = (3,4,5,6)‘[-3 (3,4,5,6) - (3,4,6,5) - (3,5,4,6) 

-(&T&6) + (3,‘%5,4) + (5,%3,6) + (5,6,3,4) 

+(5,6,%3) + (‘k&5,3) i (6,5,3,4)], 
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cc.21 

(C.3) 

F.4) 

(C.5) 

CC.61 

(C.7) 

(C-8) 

cc.91 

(C.10) 



Hl(3,4,5,6) = (3,4,5>6)‘[M(3,4,5,6) -M(6,5:4:3)] (C.11) 

M(3,4,5,6)=3(3?4,5,6)+2(3,4,6,5)+2(3,5,4,6)+2(4,3,5:6)+(3,5:6,4) 

+(3,6,4,5) +(4,3,6,5) + (4,5,3,6) + (5,3,4,6), (C.12) 

H&4,5,6) = -(3,4,5,6)’ c (I,J,K,L). (C.13) 
{I,J,K.L) 

The formulae for n = 4,5 can be used to compare our results with the expressions already 

known. In doing this it is useful to apply the DWI to the functions Hj and use the gluino 

sub-amplitudes with non-adjacent fermions as auxiliary functions. 
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Figure 1: The generic five parton Feynman diagram. 



Table 1: Coefficients for the ms+s-(g,,g~,g3,g(,g5,gs) sub-amplitudes with (I(K[J) E (I+IK.r(Ji-) 

1+2+3+4-5-6- 1+2+3-4+5-6- 1+2-3”4-5+6- 

x = PI+ P2 + p3 Y = PI tp* + p4 z = p1 + p3 + p5 

a 0 -i121(56)(4lY13) /13)(46)(5lZi% 

P /23](56)(1lX/4) [24](56!(+‘13) i [51](24)(3/216) 

-i [121(45)(31X/6) [121(35)(4/Y/6) ( [35](62)(1lZl4) 

Table 2: The numerator functions Pi for m(@:, q;, gs, g,, gs, g6). The left column contains the 
helicity orderings of the gluons and (IjXlJ) E (I + JK. rlJ+). 

II PI p3 

(g3rg4r!J5rg6) rJ = Pl + P? + P3 v = PZ f P3 + P4 w = p3 t P4 + P5 

t-> -*+-,+)(I) i56~*(13)i23)(ll~i4)* 0 -[16][26](34)2(5/W/2)2 

(+, +3 -3 -)(II) -[13][23](56)*(41U/2)* 0 [3412(16)(26)(l(W15)’ 

(->+t+>-)pq 1451”(13)(23)(l(v16)* (15](23)(5~V~3)(4~V~6)z (45]2(16)(26)(1~W(3)2 1 

t+, -, -1 f)(W) -(45)2[13)[23)(6/U~2)2 [16](24)(61V]4)(3]V]5)2 -{45)2[16]]26](3~W~2)2 

(->t,-,+,)(V] [46]2(13)(23)(1)U~5)2 [16](23)(6lV~3)(4iVl5)* -[16][26](35)*(4~W~2)* 

(+, -1 +, -1 )(VI) -[13][23](46)2(5/U~2)2 [15](24)(5/V/4)(3lVj6)’ [35j2(16)(26)(1!W/4)2 



Table 3: The numerator functions P. for m($, q;, g3, gr, g5, 96) with the same notation as Table 2. 

(93794>95>96) , p, 

(-, -> +,+)(I) (23)(34)[56][61] ((lIV/4)(2jV/1)(5IW12) - &[23](34)(5iWl2) - &,[56](61)(1~u14)) 
I/ 

1 (+,i,-,-)(JJ) [231[34j(56)(61)(41u/2)(1lV12)(1~W~5) 

(6, +> +> -)(JJJ) -tlz,j15][45](13)(26)(4~V~6)(1/W/3) - t2~,[45]2(13)(26)(11~16)(11W13) 

ft~5[15][45](13)(23)(1lU16)(4/V16) + ~45][56](12)(36)(ll~]6)(4iVl6)(ll~l3) 

t+> -2 -,+lpq ~~z~[l6][26](24)(45)(3/V~5)(3l~l2) +t*,,[13][26](45)*(61U:2)(3lWl2) 

-t,,s[13][26](24)(45)(61~l2)(3jV15) + il2][36](34)(45)(6jU12)(3’V]5)(3]W12) 

(--> -1 ->-k)(v) -tlz~[l6](35)(6IVj3)(4/Vl5)(4jW12) - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

+~3,,[46j(23)(6tv13)(1/~15)(4)v15) - i46][56](34)(35)(1/u15)(41V15)(4lWl2) 

(+, - 1 ft-)(VJI [121[231[15][35](14)(24)(26)(56)(SlUl2) i (S12.523 - S1~%,)[15][35](24)(46)(3~V]6) 

-S,,S,,[35]2(26)(46)(1~W~4) - [15]*[23][34](12)(16)(24)(46)(1~W]4) 

+Sz,S,e[l5][35](46)*(3~1 + 512) + S,,S,,[15][23][35](24)(26)(46) 


